MAHAMAYEE MAHILA MAHAVIDYALAYA DEPARTMENT OF PHYSICS #### **Course Outcomes** #### **Core Courses** | Core Courses | Course Outcomes | |----------------------------------|---| | CC – 1 Mathematical Physics - I | To acquire knowledge of divergence, curl, gradient vector fields & to understand application of calculus which is integral partof physics. To develop problem solving ability. | | CC – 2 Mechanics | To understand laws of motion, rotational dynamics, planetary motion, central force & modulus of important objects. To knows the basics of motion which is the fundamental part of physics. | | CC – 3 Electricity and Magnetism | To know about basic concepts of electrical currents, dielectrics, conductance, network theorems, nature of magnetism. | | CC – 4 Waves and Optics | To learn about waves & propagation, understanding physical & geometrical optics. To gain knowledge of interference, diffraction, polarization. | | CC – 5 Mathematical Physics - II | Solving Fourier Series, differential equation
(Frobenius method) Learning functions & properties, application
of probability & different distribution
function. | |--|---| | CC – 6 Thermal Physics | To understand the basic principle of
thermodynamics, entropy and application to
various systems. Obtain knowledge about microscopic
behavior of systems. | | CC – 7 Analog Systems and Applications | To know about Semiconductor diodes & it's application, Transistors, Amplifiers & it's classification. Study Operational amplifier & its application. To motivate the students to apply the principle of electronics in everyday life. | | CC – 8 Mathematical Physics - III | Understanding complex analysis, Fourier transform, convolution theorem. Laplace equation & its application to harmonic oscillator, simple electrical circuits. | | CC – 9 Elements of Modern Physics | To explore about inadequacy of classical mechanics, concepts of Schrodinger equation and application. Learn about alpha decay, beta decay. | | CC – 10 Digital Systems and Applications | To learn about Boolean Algebra, different logic gates, truth table, K-map, CRO & application. Basic ideas of data processing circuits, IC timer, Binary addition & substraction. Understanding ROM, RAM & Counters. | | CC – 11 Quantum Mechanics and Applications | Understanding Schrodinger equation and application, operator formalism, behavior of atoms in electric and magnetic fields. | | CC – 12 Solid State Physics | Understanding crystal structure, lattice
dynamics, elementary band theory. To know about superconductivity and LASER
System. | | CC – 13 Electromagnetic theory | Understanding Maxwell's equation in time varying fields. EM Waves in bounded and unbounded media. Studying polarization electromagnetic waves. | | CC – 14 Statistical Mechanics | To understand statistical properties of matter
related to thermodynamics, classical &
quantum approach. | ## Discipline Specific Elective (DSE) | DSE Subjects | Course Outcomes | |--|--| | DSE – I Classical Dynamics | To know about generalized coordinates,
Lagrange's equation & applications,
Hamilton's equation. To obtain knowledge about special theory of
relativity. | | DSE – II Nuclear and Particle Physics | To gather knowledge about properties of
nucleus, nuclear models, classification of
elementary particles. | | DSE – III Nano Materials and Application | To understand Nano scale System, its synthesis, characterization & applications. | | DSE – IV Project | Students acquire advanced knowledge doing
a project work with an advisory support by
faculty member, enhancing their skill,
employability & entrepreneurship. | ### Practical / LAB | Practical Topics | Course Outcomes | |--|--| | C-2, C-3, C-4, C-6, C-7, C-9, C-10, C-12, C-13, (LAB) Practical of Mechanics, Thermodynamics, Electricity & Magnetism, Waves, Optics, Modern Physics, Solid State Physics. | 1. Students learned the theories verified in practical classes. | | C-1, C-5, C-8, C-11, C-14, (LAB) Practical's based on computation and programming (C, C ⁺⁺ , Sci. Lab) | Students learn how to write algorithm, iteration techniques, plotting different types of graphs. | HOD